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ABSTRACT   
 
Rationale:  Accumulating evidence implicates inflammation in pulmonary arterial hypertension (PAH) and 
therapies targeting immunity are under investigation, though it remains unknown if distinct immune 
phenotypes exist. 
 
Objective:  Identify PAH immune phenotypes based on unsupervised analysis of blood proteomic profiles.  
 
Methods and Results:  In a prospective observational study of Group 1 PAH patients evaluated at Stanford 
University (discovery cohort, n=281) and University of Sheffield (validation cohort, n=104) between 2008-
2014, we measured a circulating proteomic panel of 48 cytokines, chemokines, and factors using multiplex 
immunoassay. Unsupervised machine learning (consensus clustering) was applied in both cohorts 
independently to classify patients into proteomic immune clusters, without guidance from clinical features. 
To identify central proteins in each cluster, we performed partial correlation network analysis. Clinical 
characteristics and outcomes were subsequently compared across clusters. Four PAH clusters with distinct 
proteomic immune profiles were identified in the discovery cohort. Cluster 2 (n=109) had low cytokine 
levels similar to controls. Other clusters had unique sets of upregulated proteins central to immune 
networks– cluster 1 (n=58)(TRAIL, CCL5, CCL7, CCL4, MIF), cluster 3 (n=77)(IL-12, IL-17, IL-10, IL-
7, VEGF), and cluster 4 (n=37)(IL-8, IL-4, PDGF-, IL-6, CCL11). Demographics, PAH etiologies, 
comorbidities, and medications were similar across clusters. Non-invasive and hemodynamic surrogates of 
clinical risk identified cluster 1 as high-risk and cluster 3 as low-risk groups. Five-year transplant-free 
survival rates were unfavorable for cluster 1 (47.6%, CI 35.4-64.1%) and favorable for cluster 3 (82.4%, 
CI 72.0-94.3%)(across-cluster p<0.001). Findings were replicated in the validation cohort, where machine 
learning classified four immune clusters with comparable proteomic, clinical, and prognostic features.     
 
Conclusions:  Blood cytokine profiles distinguish PAH immune phenotypes with differing clinical risk that 
are independent of World Health Organization Group 1 subtypes. These phenotypes could inform 
mechanistic studies of disease pathobiology and provide a framework to examine patient responses to 
emerging therapies targeting immunity. 
 
Key Words:   
Pulmonary hypertension, inflammation, cytokine, phenotype, classification, machine learning, proteomics, 
cytokines and growth factor.  
 
Nonstandard Abbreviations and Acronyms:  
 
CI  confidence interval 95% 
EC  pulmonary artery endothelial cell 
IQR  interquartile range 25-75% 
K   cluster number in unsupervised consensus clustering 
MFI  median fluorescence intensity 
mPAP  mean pulmonary arterial pressure 
NT-proBNP N-terminal pro b-type natriuretic peptide 
PAH  pulmonary arterial hypertension 
PVDOMICS Pulmonary Vascular Disease Phenomics Program 
PVR  pulmonary vascular resistance 
REVEAL Registry to Evaluate Early and Long-term PAH Disease Management 
SMC  pulmonary artery smooth muscle cell 
SQL  structured query language 
TAPSE  tricuspid annular plane systolic excursion 
WHO   World Health Organization  
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INTRODUCTION 
 

Pulmonary arterial hypertension (PAH) is a heterogeneous disorder that rarely presents in isolation 
and is more commonly associated with a range of predisposing factors including genetic mutations, drug 
or toxin exposures, and various systemic diseases. The World Health Organization (WHO) classification 
defines Group 1 PAH subtypes according to etiology,1 a practical system that has cultivated productive 
dialogue among clinicians and shaped the current approach to patient care. However, this broad clinical 
classification may ignore subtle pathophysiologic differences across patients that could contribute to 
observed variation in rates of disease progression and outcomes. Moreover, clinical PAH subclasses neither 
inform therapy selection nor forecast the diverse responses to treatment.2 To address and deconstruct 
sources of disease heterogeneity, PAH consensus statements have called for ‘deep phenotyping’ approaches 
that center on high-throughput molecular data and leverage modern computational tools. Identification of 
PAH endophenotypes may translate to patient classification schemes that sit closer to underlying 
pathobiology, assist in clinical trial cohort selection, and pave a road to precision medicine.3-5  
 

An expanding body of knowledge indicates that inflammation and autoimmunity underlie PAH 
pathogenesis. Pre-clinical work suggests that aberrant reparative immunity and loss of self-tolerance result 
in exuberant inflammation, which appears to perpetuate vascular injury and remodeling.6-8 In PAH patients, 
inflammatory cells localize around remodeled lung vessels and levels of multiple cytokines are abnormally 
elevated in peripheral blood.9, 10 Immunity may therefore offer a logical platform for PAH molecular 
phenotyping. It remains unknown if different degrees and forms of inflammation exist across patients, or 
whether WHO Group 1 subtypes have characteristic immune profiles. The circulating immune milieu has 
not been investigated across subtypes or examined as a multivariable profile with system-based analysis, 
as existing studies have only assessed the prognostic significance of individual inflammatory markers in 
idiopathic PAH.11, 12 These studies and other reported molecular phenotyping efforts to date have inherent 
limitations, as analyses are anchored to specific clinical definitions and PAH subtypes that may not 
adequately reflect disease heterogeneity.13-17 ‘Unsupervised’ phenotyping is a more agnostic strategy, where 
molecular profiles directly define phenotypes that are subsequently related to clinical characteristics.18 
These molecular phenotypes can be identified by machine learning, which is the inference of substructure 
in complex unlabeled data with computer algorithms.  
 

Unsupervised immune phenotyping efforts are warranted to determine if inflammation is an 
important source of heterogeneity and a viable framework for patient classification in PAH. We 
hypothesized that immune heterogeneity exists for all forms of Group 1 PAH and that patient subsets may 
express distinct patterns of inflammation in blood. In this study, we aimed to identify PAH immune 
phenotypes by using unsupervised machine learning to classify patients based on circulating proteomic 
profiles of cytokines, chemokines, and growth factors. We postulated that this molecular phenotyping 
approach may identify immune phenotypes that have distinct proteomic profiles, are independent of Group 
1 PAH subtypes, and associated with differing clinical disease severity and outcomes.   
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METHODS 
 
Data sharing. 
De-identified proteomic and clinical data supporting the findings of this study are available from the 
corresponding author upon appropriate request. 
 
Study population and design. 
In this prospective observational study of Group 1 PAH patients who had peripheral blood biobanked at 
Stanford University between 2008-2014 (discovery cohort, n=281) and the University of Sheffield 
between 2009-2012 (external validation cohort, n=104), a proteomic immune panel was measured and 
utilized for unsupervised molecular phenotyping. PAH was confirmed hemodynamically with mean 
pulmonary arterial pressure (mPAP) ≥25 mmHg, pulmonary vascular resistance (PVR) >240 
dynes·sec/cm5, and pulmonary arterial wedge pressure ≤15 mmHg.1 The discovery cohort included patients 
with incident (treatment naïve) and prevalent PAH (on therapy). Peripheral venous blood was collected 
from the antecubital fossa during diagnostic or surveillance cardiac catheterization, then plasma was 
processed and stored in the Stanford Pulmonary Hypertension Biobank (online supplement p.1). Of patients 
with available samples (n=301), we excluded those with chronic infections (n=7), active malignancy (n=4), 
primary immunodeficiency (n=1), or acute illness other than decompensated right heart failure within one 
month of sampling (n=8). The Vera Moulton Wall Center structured query language (SQL) relational 
database (online supplement p.2-3) was used to capture patient demographics, PAH etiology, comorbidities, 
clinical disease metrics available within one month of blood sampling (non-invasive markers and 
hemodynamics), background therapies, and survival data. Plasma was also obtained for proteomic 
measurements from age-matched healthy controls (n=88), who were screened at Stanford by questionnaire, 
bloodwork, echocardiography, and multi-site vascular ultrasound (online supplement p.1). Validation 
cohort PAH samples were collected from treatment naïve subjects at the time of diagnostic catheterization, 
then stored in the Sheffield Pulmonary Vascular Disease Unit biobank (online supplement p.1-2). 
Validation cohort clinical features were obtained from a SQL database that links University of Sheffield 
hospital records and survival data from National Health Service Digital (online supplement p.3). 
Comorbidity and NT-proBNP data were unavailable in the validation cohort, and the incremental shuttle 
walk test (ambulation around cones nine meters apart at externally-cued speed that is escalated until patient 
fatigues or fails to keep pace) was used in place of the six-minute walk to assess functional capacity. 
 
In the discovery cohort, the immune phenotyping approach entailed (i) unsupervised machine learning 
(consensus clustering) to identify PAH clusters based on proteomic immune profiles without guidance from 
clinical data, then (ii) proteomic network analysis to ascertain central proteins in discovered clusters, and 
(iii) comparison of clinical features across clusters (Figure 1A). We then reapplied unsupervised consensus 
clustering in the validation cohort, to determine if the approach yielded immune clusters with cytokine 
profiles and clinical characteristics similar to those identified in the discovery stage (Figure 1B).  
 
Proteomic measurement and pre-processing. 
We measured a panel of 48 cytokines, chemokines, and growth factors using the Bio-Plex® multiplex 
immunoassay (Bio-Rad Inc., Hercules, CA)(Online Table I), a magnetic bead-based flow cytometric 
platform built on Luminex® xMAP™ technology (Luminex Corporation, Austin, TX) that simultaneously 
quantifies numerous proteins in samples. Our immunoassay protocol adhered to manufacturer instructions 
(online supplement p.3-4). Median fluorescence intensity (MFI) was detected for each protein with a 
Luminex 200™ instrument. We did not derive absolute protein concentration from this signal, as MFI does 
not require detection limit censoring, better quantifies analytes with low abundance, and has greater 
statistical power in downstream analysis.19 Data pre-processing involved background fluorescence 
subtraction and robust quantile normalization. We adjusted for plate and batch effects by empirical Bayes 
methodology (online supplement p.4),20 and visualized adjustments with principal component analysis 
(Online Figure I). All data were pre-processed and analyzed with R software version 3.3.5.   
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Immune cluster identification: Unsupervised machine learning. 
We utilized unsupervised consensus clustering to sort PAH patients into clusters based on proteomic 
immune profiles (online supplement p.4-5). This resampling-based analysis framework guides any 
clustering algorithm to achieve more robust data partitioning.21, 22 Across runs of a specified clustering 
algorithm on numerous dataset subsamples, cluster assignment stability is objectively assessed to determine 
the number of clusters without a priori knowledge. We implemented consensus clustering with 1,000 
resampling iterations (95% of patients/subsample) over a cluster number (k) range of k=2-20. The k 
optimizing clustering stability was ascertained by analyzing consensus matrix heatmaps (Online Figure 
IIA), consensus cumulative distribution functions (Online Figure IIB), and the proportion of ambiguously 
clustered pairs (Online Table II).21, 23 To ‘tune’ discovery cohort consensus clustering, we independently 
applied three algorithms (k-means, k-medoids, hierarchical) with five different distance metrics (15 total 
combinations) and determined which input parameters returned clusters with the best internal validity 
statistics (Online Table III). Based on this tuning, consensus clustering was ultimately applied with the k-
medoids algorithm and Euclidean distance in both cohorts. To evaluate the face validity of final clusters 
(confirm between-cluster proteomic variance) and compare profiles between discovery and validation 
clusters, patient-level data was visualized with principal component analysis and standardized heatmaps. 
 
Proteomic network analysis by cluster. 
A weighted protein-protein partial correlation network was constructed as a force-directed graph for each 
discovery cohort cluster, to examine multivariable proteomic relationships, map out multicollinearity, and 
identify central network cytokines (Gaussian graphical modeling)(online supplement p.5-8). Partial 
correlations were calculated for each of the 1,128 protein-protein pairs, controlling for interactions with all 
other proteomic covariates. The Fruchterman-Reingold modeling algorithm was used to graph force-
directed networks,24, 25 where each measured protein was a network node, and partial correlations were 
represented by weighted edges that connected node pairs. Nodes behaved like atomic particles and naturally 
repulsed each other, while edges attracted node pairs with spring-like forces that reflected partial 
correlations. The algorithm found the network configuration with minimal energy closest to equilibrium. 
Saturated networks were initially constructed, with all edges retained regardless of partial correlation 
weights. To limit false positive edges and draw interpretable ‘sparse core networks’, graphical LASSO 
regularization was applied with model selection by the extended Bayesian information criterion.26 Network 
node centrality indices (strength, closeness, and betweenness) were calculated to identify central proteins 
in each cluster network.27 
 
Clinical comparison of clusters. 
Clinical characteristics at blood sampling were compared across clusters by applying the one-way ANOVA 
or Kruskal-Wallis test for continuous variables and the chi-square or Fisher’s exact test for categorical data. 
When across-cluster differences were statistically significant (p<0.05), we performed pairwise cluster 
comparisons (Dunn’s test or independent two-cluster tests as applicable) and adjusted p-values for multiple 
testing (Benjamini-Hochberg method). In the discovery cohort, the outcome of time to death or lung 
transplantation from blood sampling was assessed. Patients without events were right-censored at their last 
encounter preceding data lock (August 2016). Kaplan-Meier estimates of transplant-free survival were 
compared across PAH clusters by log-rank test. In sensitivity analysis, we repeated Kaplan-Meier estimates 
among treatment naïve patients.  In the validation cohort, the outcome of time to death was assessed during 
the five-year period that followed blood sampling. Validation Kaplan-Meier survival analysis did not 
require censoring, as death data was captured from the NHS Digital for all subjects including those lost to 
follow-up at University of Sheffield. In pooled analysis across discovery and validation cohorts, we 
performed multivariable Cox proportional hazards modeling to assess the five-year risk of death associated 
with each immune cluster adjusted for age, sex, PAH etiology, and other clinical covariates with 
significance in univariate analysis (examined variables included treatment status, functional class, and 
hemodynamic parameters).  
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Sample size estimation and bias minimization. 
Given the exploratory nature of this study and our methodology, it was not possible to estimate cohort size 
a priori. No pre-existing data was available to indicate the number or relative size of immune clusters to 
expect, and there is no accepted guideline for determining needed sample size in unsupervised clustering. 
However, care was taken to minimize sources of bias across several facets of the study. The overall 
approach was inherently unbiased, as we (a) classified patients by molecular data alone without guidance 
from clinical features, and (b) analyzed cytokines as an interrelated system without focus on any particular 
mediator or pathway. To eliminate potential cohort selection bias, we included consecutively biobanked 
patients regardless of PAH subtype. The proteomic panel was broad by design, including mediators 
implicated in PAH pathogenesis and others not previously linked to the disease. To minimize measurement 
bias plasma collection and processing were carefully protocolized, samples were assayed within three years 
of storage, freeze-thaw cycling was avoided, single lot numbers were used for reagents, and we plate/batch-
adjusted proteomic data to eliminate non-biological variation. Samples were balanced across assay plates 
by age, sex, and PAH etiology to ensure this adjustment did not mask any clustering relationships with 
these variables. Many aspects of our clustering methodology were also intended eliminate bias including 
the resampling-based framework, normalization of proteomic measurements to ensure all cytokines had 
equal weight, data-driven determination of cluster number, and use of objective criteria to select the specific 
clustering algorithm and distance metric applied.  
 
 
 
RESULTS 
 
Discovery cohort 
 
Cohort characteristics at blood sampling.  
 

PAH patients (n=281) had a median age of 52 years (25-75% interquartile range [IQR] 41-63 
years), and most were female (n=206, 73.3%)(Table 1). Median time from diagnosis to proteomic sampling 
was 1.0 years (0.0-4.7). Underlying PAH etiologies included connective tissue disease (n=87, 31.0%), 
idiopathic (n=84, 29.9%), drugs and toxins (n=49, 17.4%), congenital heart disease (n=38, 13.5%), and 
portal hypertension (n=19, 6.8%). Most patients were functional class III-IV (n=175, 62.3%), with median 
six-minute walk distance of 400 meters (306-491). PAH was hemodynamically severe with mPAP 47 
mmHg (36-59), PVR 720 dynes·sec/cm5 (424-1104), and cardiac index 2.1 mL/min/m2 (1.7-2.4). Subjects 
were most often treatment naïve (n=123, 43.8%) or on PAH monotherapy (n=73, 26.0%).  
 
PAH patients partition into four proteomic immune clusters.  
 

Unsupervised machine learning identified four patient clusters that each expressed a distinct blood 
proteomic immune profile (Figure 2A). Of 281 discovery cohort patients, 172 (61.2%) stratified into the 
three clusters that had evidence of circulating inflammation (clusters 1, 3, and 4), while the remaining 109 
subjects (38.8%) in cluster 2 had low cytokine and factor levels that were similar to healthy controls. Cluster 
4 was the smallest subgroup (n=37, 13.2%) and had the highest levels of several immune mediators (nearly 
half of measured proteins were >1.5 standard deviations above the overall PAH mean). Similar proteins 
were upregulated in cluster 3 (n=77, 27.4%), but at a lower magnitude (~0.5 standard deviations above 
PAH mean). Among cluster 1 patients (n=58, 20.6%), an entirely different set of cytokines and factors was 
upregulated. Principal component analysis confirmed proteomic variance between the machine learned 
clusters (Figure 2B), where clusters 2, 3, and 4 partitioned along the first principal component, cluster 1 
was distinguished by the second principal component, and healthy controls overlapped cluster 2. PAH 
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cluster assignments also demonstrated stability across 1,000 machine learning algorithm iterations, as intra-
cluster consensus rates were 92.5, 95.5, 95.0, and 98.2%, respectively, in clusters 1–4 (Online Figure IIC). 
 
Network analysis identifies central cytokine signatures in immune clusters.  
 

When we examined multivariable protein-protein relationships by PAH cluster with partial 
correlation networks, each cluster displayed a characteristic proteomic network structure (Figure 3A). 
Clusters were also differentiated by a unique central network signature (Figure 3B), which was defined by 
upregulated proteins that had high measures of network centrality (strength, closeness, and betweenness 
centralities exceeded the mean of all network nodes, as shown in Online Figure IV)– cluster 1 (9 proteins), 
cluster 3 (13 proteins), and cluster 4 (15 proteins). Of upregulated proteins in cluster 1, TRAIL had the 
highest quantified network centrality, followed by CCL5, CCL7, CCL4, MIF, and TNF-. In cluster 3, 
upregulated analytes with the top centrality measures were IL-12, IL-17, IL-10, IL-7, VEGF, and IL-15. 
For cluster 4, these proteins were IL-8, IL-4, PDGF-, IL-6, CCL11, and IL-9. A central network signature 
was not identified in cluster 2, as no measured analytes were upregulated. A few proteins were part of the 
central network signature in two different clusters (cluster 1 and 3 had CCL7 in common, and cluster 3 and 
4 shared IL-12, IL-7, IL-15, and IL-1), though no single cytokine was central in three or more clusters. 
The overall strength of protein-protein relationships also differed across clusters (Online Figure V shows 
partial correlation heatmaps).  Pairwise partial correlations were the strongest in cluster 1 (coefficient 75-
90th percentile range 0.402-0.542) and cluster 4 (0.389-0.526). These network graphs reflected stronger 
relationships, as nodes were densely spaced and embedded subnetworks were present. In contrast, partial 
correlations were weaker in cluster 2 (0.173-0.245) and cluster 3 (0.229-0.328), translating to networks 
with wider node spacing. 
 
Table 1. Discovery cohort: characteristics at the time of blood sampling (n=281). 
 

Demographics and PAH etiology 

Age*, years, median (25-75% IQR)  52 (41-63) 
Female sex*, n (%) 206 (73.3) 
Race, n (%)  
   Caucasian 155 (55.2) 
   Asian 49 (17.4) 
   Hispanic 43 (15.3) 
   Black 19 (6.8) 
PAH etiology, n (%)  
   Connective tissue disease-APAH 87 (31.0) 
   Idiopathic PAH 84 (29.9) 
   Drugs and toxins-APAH 49 (17.4) 
   Congenital heart disease-APAH 38 (13.5) 
   Portopulmonary hypertension 19 (6.8) 
   Hereditary PAH 4 (1.4) 

Sample timing relative to PAH clinical presentation 

Time interval, years, median (IQR)  
   PAH diagnosis to plasma collection 1.0 (0.0-4.7) 
   PAH symptom onset to plasma 
collection  

3.0 (1.1-5.8) 
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Non-invasive disease metrics 

NYHA functional class, n (%)  
   Class I 17 (6.0) 
   Class II 89 (31.7) 
   Class III 141 (50.2) 
   Class IV 34 (12.1) 
Six-minute walk distance†, m, median 
(IQR) 

400 (306-491) 

NT-proBNP, pg/mL, median (IQR) 312 (93-1422) 
DLCO †, % predicted, median (IQR) 69 (50-84) 
GFR, ml/min/1.73 m3, median (IQR) 57 (53-87) 

Hemodynamics and PAH-guided therapy 

Invasive hemodynamics, median (IQR)  
   Mean pulmonary arterial pressure, 
mmHg 

47 (36-59) 

   Pulmonary vascular resistance†, 
dynes·sec/cm5 720 (424-1104) 

   Cardiac index†, L/min/m2 2.1 (1.7-2.4) 
   Mean right atrial pressure†, mmHg 8 (5-12) 
   Pulmonary arterial wedge pressure, 
mmHg 

10 (8-14) 

Extent of PAH therapy, n (%)  
   Treatment naïve 123 (43.8) 
   Monotherapy 73 (26.0) 
   Dual therapy 63 (22.4) 
   Triple therapy 22 (7.8) 

*  Healthy controls (n=88): median age 58 yrs (IQR 44-
69), female n=46 (52.3%) 
 
† Missing data: six-minute walk distance (n=15), DLCO 
(n=19), pulmonary vascular resistance by Fick (n=2), 
cardiac index by Fick (n=4), right atrial pressure (n=2) 
 
Abbreviations: APAH= associated pulmonary arterial 
hypertension, DLCO= diffusion capacity of lung, GFR= 
glomerular filtration rate, IQR= 25-75% interquartile range, 
NYHA= New York Heart Association, NT-proBNP= N-
terminal pro b-type natriuretic peptide 

 
Immune clusters are not differentiated by circulating cell subsets.  
 

No significant differences were found across clusters for circulating total white blood cell count 
and the percent or absolute count of neutrophils, lymphocytes, monocytes, basophils, and eosinophils 
(Online Figure VI). 
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Immune clusters are independent of PAH subtypes and duration of illness.  
 

The overall distribution of PAH etiologies was similar across clusters (p=0.110)(Figure 4A, 
Online Table IV). While idiopathic PAH was overrepresented in cluster 3 (40.2% vs other clusters 17.2–
29.7%) and congenital heart disease-associated PAH was more common in cluster 2 (21.1% vs other 
clusters 7.8–10.3%), differences were relatively small in magnitude. Moreover, none of the Group 1 PAH 
subtypes appeared to have a distinct immune profile (Online Figure VII). Median times from PAH 
diagnosis and patient-reported symptom onset to plasma collection did not differ significantly across 
clusters (Table 2, Online Table V and Figure VIII). 
 
Immune clusters are not associated with patient demographics, comorbidities, or background therapies.  
 

Proteomic-based PAH clusters were similar with respect to age, sex, race, and several relevant 
comorbidities (Table 2). Furthermore, neither the extent nor class of background PAH-specific therapy 
differed significantly between clusters (Online Figure IX). While prostanoid therapy was less common in 
cluster 4 (10.8%) versus other clusters (26.0-34.5%), the finding did not reach statistical significance 
(p=0.061). Similar proportions in each cluster were on adjunctive PAH treatments, immune modulators, 
non-steroidal anti-inflammatory drugs, and allergy agents. In a subgroup analysis where clustering was 
restricted to subjects without background immune modulators (n=219)(Online Figure X), all patients 
retained their original cluster assignment and cluster proteomic profiles were similar to those observed in 
total cohort analysis.   
 
Immune clusters have different clinical risk profiles.  
 

For multiple established surrogates of PAH clinical risk, cluster 1 was the highest-risk group, 
cluster 3 was the lowest-risk, and clusters 2 and 4 were intermediate-risk (Figure 4B, Online Table VI). 
Compared to cluster 3, cluster 1 had a greater patient proportion with functional class IV symptoms (22.4 
vs 5.4%, p=0.022), NT-proBNP >1500 pg/mL (39.7 vs 14.3%, p=0.007), and high-risk composite REVEAL 
score (36.2 vs 13.0%, p=0.012). Conversely, more patients in cluster 3 had six-minute walk distance >440 
meters (51.4 vs 26.3%, p=0.039), NT-proBNP <300 pg/mL (61.0 vs 37.9%, p=0.046), and low or average-
risk REVEAL score (79.2 vs 55.2%, p=0.027). Echocardiographic right ventricular function was the most 
impaired in cluster 1 (Online Table VII), where fractional area change was significantly lower than cluster 
3 (median 24% [21-28] vs 29% [25-34], p=0.028), and a greater percentage of patients had TAPSE 1.6 
cm (53.8%) than in cluster 2 (32.2%, p=0.04) and cluster 3 (30.0%, p=0.04). Hemodynamic comparison 
(Online Table VIII and Figure XI) revealed that mPAP was more elevated in cluster 1 (52 mmHg [45-
60]) than cluster 2 (46 mmHg [34-60], p=0.045) and cluster 3 (45 mmHg [35-54], p=0.005). Right atrial 
pressure was also higher in cluster 1 (11 mmHg [5-14]) than cluster 2 (8 mmHg [5-11], p=0.041), cluster 3 
(7 mmHg [5-10], p=0.030), and cluster 4 (6 mmHg [4-6], p=0.002). However, no significant cluster 
differences existed for PVR, cardiac index, or wedge pressure.  
 
Long-term outcomes differ across immune clusters.  
 

Discovery cohort patients were followed for a median of 3.0 years (IQR 1.4-4.8) from plasma 
sampling. In total, 62 subjects died and 17 underwent transplantation (8.7 events/100-patient-years). Events 
occurred in 50.0% of cluster 1 patients (n=29/58, 22 deaths, 7 transplants), 29.7% of cluster 4 (n=11/37, 10 
deaths, 1 transplant), 27.5% of cluster 2 (n=30/109, 24 deaths, 6 transplants), and only 11.6% of cluster 3 
(n=9/77, 6 deaths, 3 transplants). At five years, the Kaplan-Meier estimated transplant-free survival rate 
was highest in cluster 3 (82.4%, confidence interval 72.0-94.3%), lowest in cluster 1 (47.6%, CI 35.4-
64.1%), and intermediate for cluster 2 (66.6%, CI 56.7-78.3%) and cluster 4 (66.0%, CI 51.3-
84.7%)(across-cluster p<0.001) (Figure 4C). Similar cluster survival differences were observed when 
analysis was limited to patients who were treatment naïve at plasma sampling (Online Figure XII). 
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Table 2. Discovery cohort: Comparison of demographics, duration of illness, comorbid conditions, 
and background medications across PAH immune clusters. 
 

 
Cluster 1 

(n=58) 
Cluster 2 
(n=109) 

Cluster 3 
(n=77) 

Cluster 4 
(n=37) 

p-value 
* 

Age, years, mean  SD 49  14 54  16 51  15 49  14 0.109 

Female sex, n (%) 40 (69.0) 80 (73.4) 62 (80.5) 24 (64.9) 0.266 

Race, n (%)      

   Caucasian 28 (48.3) 59 (54.1) 45 (58.4) 23 (62.2) 0.527 

   Black 1 (1.7) 10 (9.1) 7 (9.1) 1 (2.7) 0.124 

   Hispanic 13 (22.4) 15 (13.8) 15 (19.5) 7 (18.9) 0.353 

   Asian 10 (17.2) 17 (15.6) 15 (19.5) 7 (18.9) 0.911 

BMI, kg/m2, median (IQR) 27 (24-34) 28 (24-32) 27 (23-32) 28 (23-33) 0.975 

Time from PAH diagnosis, 
years, median (IQR) 

1.1 (0.0-5.4) 1.3 (0.0-5.3) 0.9 (0.0-3.5) 0.0 (0.0-4.6) 0.193 

Comorbid conditions †, n 
(%) 

     

   Mild COPD/emphysema 1 (1.7) 9 (8.3) 7 (9.1) 1 (2.7) 0.221 

   Mild radiographic ILD 7 (12.1) 15 (13.8) 8 (10.4) 6 (16.2) 0.824 

   Asthma 5 (10.3) 16 (14.7) 11 (14.2) 6 (16.2) 0.663 

   OSA (on PAP therapy) 20 (20.7) 36 (33.0) 22 (28.6) 10 (27.0) 0.411 

   CAD or ischemic stroke 2 (3.4) 12 (11.0) 7 (9.1) 1 (2.7) 0.237 

   Essential hypertension 12 (20.7) 35 (32.1) 19 (24.7) 11 (29.7) 0.405 

   Chronic kidney disease 22 (37.9) 42 (38.5) 27 (35.1) 10 (27.0) 0.632 

   Diabetes mellitus 8 (13.8) 20 (18.3) 10 (13.0) 3 (8.1) 0.446 

   Hyperlipidemia 8 (13.8) 28 (25.7) 22 (28.6) 5 (13.5) 0.089 

   Thyroiditis 5 (8.6) 11 (10.1) 5 (6.5) 1 (2.7) 0.563 

PAH-specific therapies, n 
(%) 

     

   Treatment naïve  22 (37.9) 44 (40.4) 37 (48.1) 20 (54.1) 0.323 

   Monotherapy 18 (31.0) 26 (23.9) 21 (27.3) 8 (21.6) 0.692 

   Dual or triple therapy 18 (31.0) 39 (35.8) 19 (24.7) 9 (24.3) 0.341 

   Phosphodiesterase-5 
inhibitor 

25 (43.1) 52 (47.7) 30 (39.0) 14 (37.9) 0.594 

   Endothelin receptor 
antagonist 

15 (25.9) 31 (28.4) 13 (16.9) 9 (24.3) 0.334 

   Prostanoid 20 (34.5) 34 (31.2) 20 (26.0) 4 (10.8) 0.061 

Other background agents, n 
(%) 

     

   Calcium channel blocker ‡  11 (19.0) 25 (22.9) 15 (19.5) 7 (18.9) 0.901 

   Loop diuretic 38 (65.5) 64 (58.7) 45 (58.4) 18 (48.6) 0.448 

   Aldosterone antagonist 21 (36.2) 28 (25.7) 21 (27.3) 9 (24.3) 0.478 
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   Anticoagulation 21 (36.2) 39 (35.8) 20 (26.0) 9 (24.3) 0.324 

   Any immune modulator § 17 (29.3) 22 (20.2) 17 (22.2) 6 (16.2) 0.435 

   Aspirin or other NSAID 15 (25.9) 36 (33.0) 25 (32.5) 8 (21.6) 0.491 

   Anti-histamine/leukotriene 7 (12.1) 16 (14.7) 15 (19.5) 5 (13.5) 0.653 

* Across-cluster comparisons: Continuous data compared by one-way ANOVA test (variables with 
normal distribution) or Kruskal-Wallis test (non-symmetric distribution). Categorical variables 
compared by chi-square or Fisher’s exact test, as appropriate. 
 
† Pulmonary comorbidities were not the primary etiology of pulmonary hypertension. See online 
supplemental methods for definitions. 
 
‡ CCB indications: Raynaud’s phenomenon (n=28), vasoreactive PAH (n=22), essential hypertension 
(n=8) 
 
§ Immune modulating agents: prednisone, mycophenolate mofetil, hydroxychloroquine, leflunomide, 
azathioprine, tacrolimus, bortezomib, anakinra, rituximab, or cyclophosphamide. All but two patients 
were on multi-agent immune modulator regimens. 
 
Abbreviations: BMI= body mass index, CAD= coronary artery disease, COPD= chronic obstructive 
pulmonary disease, CTD= connective tissue disease, ILD= interstitial lung disease, IQR= interquartile 
range 25-75%, NSAID= non-steroidal anti-inflammatory drug, OSA= obstructive sleep apnea, PAP= 
positive airway pressure, SD= standard deviation 

 
Validation cohort. 
 
Cohort characteristics at blood sampling.  
 

Validation cohort patients had median age of 60 years (IQR 51-66), most were female 
(n=65)(62.5%), and nearly all subjects were white (n=98)(94.2%) (Online Table X shows comparison with 
discovery cohort). Idiopathic PAH (n=53)(51.0%) was the most prevalent etiology, followed by connective 
tissue disease (n=37)(35.6%), congenital heart disease (n=7)(6.7%), and portal hypertension (n=7)(6.7%). 
The majority of patients were functional class III-IV (n=79)(76.0%), and PAH was severe with median 
mPAP 50 mmHg (40-60), PVR 688 dynes·sec/cm5 (376-872), and right atrial pressure 10 mmHg (7-15). 
All subjects were treatment naïve. 
 
External validation of proteomic immune clusters.  
 

Unsupervised machine learning also identified four proteomic immune clusters in the validation 
cohort (see Online Figure XIII), and their molecular profiles appeared to be similar to those found in the 
discovery stage (Figure 5A). Cluster 2 patients (n=33) again had low levels of most cytokines, while 
subjects in cluster 1 (n=26), cluster 3 (n=36), and cluster 4 (n=9) had upregulation of similar proteins that 
characterized corresponding clusters in the discovery cohort. The percentage of patients assigned to 
analogous discovery and validation clusters was also comparable– cluster 1 (20.6 vs 25.0%), cluster 2 (38.7 
vs 31.7%), cluster 3 (27.4 vs 34.6%), cluster 4 (13.2 vs 8.7%). In principal component analysis, validation 
clusters separated in a manner akin to what was observed in the discovery cohort (Figure 5B), as clusters 
2, 3, and 4 partitioned along the first principal component and cluster 1 was distinguished by the second 
principal component.  
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External validation of immune cluster clinical features.  
 

Median age and the sex distribution did not differ significantly across validation cohort clusters 
(Online Table XI). Consistent with findings in the discovery cohort, validation clusters each included a 
similar mixed distribution of Group 1 PAH etiologies. For available clinical markers of PAH risk, cluster 
1 again appeared to be a high-risk subgroup. At blood sampling, cluster 1 patients had the worst functional 
class profile, shortest incremental shuttle walk distance, and most elevated right atrial pressure. The 
validation cohort was followed for a median of 5.0 years (1.9-5.0) from plasma collection, and 52 total 
deaths occurred (14.4 events/100-patient-years). Validation cluster survival differences paralleled those 
observed in the discovery cohort, as the Kaplan-Meier estimated five-year survival rate was best in cluster 
3 (63.9%, CI 50.0-81.7%), worst in cluster 1 (30.8%, CI 17.3-54.8%), and intermediate in cluster 2 (54.5%, 
CI 39.9-74.5) and cluster 4 (44.4%, 21.4-82.3%)(across-cluster p=0.0289) (Figure 5C).  
 
Pooled cohort survival analyses.  
 

In combined discovery and validation cohorts (n=385), the estimated five-year survival rate was 
39.5% (CI 29.5-52.8%) for the high-risk cluster 1 compared to 79.4% (66.8-88.2%) for the low-risk cluster 
3, 62.3% (53.6-72.4%) in cluster 2, and 60.9% (47.5-78.1%) in cluster 4 (across-cluster p<0.0001)(Online 
Figure XIV). Even after adjustment for age, sex, PAH etiology, treatment naïve status, functional class and 
right atrial pressure, cluster 1 was associated with increased five-year risk of death (HR 2.19, CI 1.51-3.18, 
p<0.0001) and cluster 3 portended reduced risk (HR 0.39, CI 0.25-0.63, p=0.0001) (Online Table XIIA-
C).   
 
 
 
DISCUSSION 
 

In this first unsupervised molecular phenotyping study of PAH, we performed an agnostic machine 
learning approach to discover and validate four immune phenotypes based on multivariable blood cytokine 
profiling. We used inflammation as a mechanistically-relevant platform for testing the hypothesis that 
unsupervised molecular phenotyping can uncover sources of heterogeneity in PAH. We found that PAH 
cohorts can be re-organized into four clusters with distinct circulating cytokine profiles. Not all clusters 
appear to demonstrate a vigorous inflammatory profile, but they are differentiated by their relative 
inflammatory signatures. While these immune clusters do not stratify by underlying PAH etiology, there 
are significant cluster-specific differences in clinical risk parameters and long-term prognosis. Finally, we 
analyzed proteomic interaction networks and ascertained a unique central cytokine signature for each 
immune phenotype. Our work provides evidence that immunity is a workable platform for precision 
phenotyping in PAH, an approach that warrants particular attention as therapies targeting inflammation 
emerge. 
 

Blood cytokine profiling offers a possible adjunct framework for patient classification in PAH, as 
the immune clusters identified were independent of PAH etiologies. Within each Group 1 subtype, we 
observed immune profile heterogeneity and all four clusters were represented. Multiple non-competing 
hypotheses could be proposed to explain this interesting finding. Predisposing conditions defining these 
clinical subtypes may produce heterogeneous inflammation due to patient-level variation in genetic 
factors,28 metabolism,29 sex hormones,30 or endogenous anti-inflammatory responses.31 Alternatively, all 
PAH predisposing conditions might elicit similar programmatic inflammation and vascular remodeling. If 
true, the heterogeneity we observed either (a) captured patient variability in the stage or rate of PAH 
pathogenesis, or (b) reflected confounding modulators like medications or comorbidities. However, our 
findings do not support the notion that the immune clusters reflect different stages of PAH, as median 
duration of illness was similar across discovery cohort clusters, and the validation cohort only included 
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newly diagnosed treatment naïve patients.  Moreover, clusters were not associated with any demographic 
features, comorbid conditions, or background therapies. Finally, it is plausible that PAH is a syndrome 
rather than disease, where different pathogenic mechanisms predominate across patients and inflammation 
is only relevant in certain cases.  
 

The majority of the patients studied had significant evidence of inflammation in circulation 
(immune clusters 1, 3, and 4), though we also identified a PAH subset with low cytokine and chemokine 
levels similar to healthy controls (cluster 2). This relatively sizable cluster (36.9%, n=142/385 of combined 
cohorts) would have been easily overlooked if we had not analyzed the cytokine data as a multivariable 
profile. Single-protein analysis would have suggested widespread inflammation, where median levels of 42 
of 48 analytes were upregulated versus controls (Online Figure XV). This observation highlights the 
potential to achieve precision with an approach that couples broad molecular profiling and unsupervised 
cohort ‘splitting’, which contrasts a more reductionist strategy to molecular analysis and generalized 
‘lumping’ of patients with a disease.32 The cluster 2 molecular profile provides evidence that PAH is not 
always associated with inflammation. However, it remains unknown whether this lack of immune signal 
persists over time. Inflammation may have existed transiently before blood sampling when PAH developed, 
or it could have arisen post-sampling during disease progression.  
  

While our molecular-based PAH classification approach was not primarily intended to 
prognosticate, it ultimately stratified patient subgroups with differing clinical risk and outcomes. The 
relationship between immune profiles and prognosis was consistent across two dissimilar PAH cohorts and 
persisted after adjustment for other established predictors, providing evidence that clinically-significant 
immune phenotypes may exist. Previous research has suggested a link between blood levels of various 
proinflammatory cytokines and survival.11, 12 Perivascular immune cell burden was also shown to correlate 
with vessel thickness and hemodynamics in a lung histopathology study of idiopathic PAH.33 Indirectly, 
that work implied a possible relationship between inflammation and disease progression. However, higher 
cytokine levels did not necessarily equate to worse prognosis in the context of our PAH immune clusters– 
cluster 3 (moderate immune signal) had the most favorable outcomes, while cluster 2 (lowest signal) and 
cluster 4 (highest signal) had similar intermediate prognosis, and cluster 1 (high signal) had the worst 
outcomes. These relationships suggest that inflammation is not well characterized by single markers, and 
may help explain why individual cytokines have had inconsistent prognostic value across studies.11, 12 Based 
on our findings, we also speculate that inflammation might play a differential role in PAH pathobiology 
across clusters– it may be deleterious and drive vascular remodeling in cluster 1 (high-risk clinical 
phenotype) but contribute less to pathogenesis in clusters 3 and 4 (low and intermediate-risk). Inflammation 
in these lower-risk clusters could in part reflect reparative immune processes that have protective effects, 
or it may merely be a consequence of vascular injury and not play a significant role in disease progression. 
 

Inflammation has a multi-faceted and incompletely understood role in PAH vascular injury and 
remodeling that involves various signaling pathways, pleiotropic cytokines from multiple cellular sources 
that have canonical and non-canonical effects, complex local and distant cell-cell interactions, and impaired 
regulatory immune responses, which appear to perpetuate endothelial cell (EC) and smooth muscle cell 
(SMC) proliferation and cell phenotype shifts.10, 31 As an initial step toward disentangling cluster-specific 
pathobiology, we detected unique central cytokine signatures in each immune cluster using partial 
correlation network analysis. This approach has inferred biological relationships in several ‘omics’ 
domains.34-36 These central network signatures may offer mechanistic clues and candidate drug targets by 
cluster,32 as each included several mediators that have been implicated in PAH pathogenesis. For example, 
TRAIL was the most central network protein in high-risk cluster 1. TRAIL upregulation induces migration 
and proliferation of SMCs in idiopathic PAH, and anti-TRAIL antibodies prevent and reverse vascular 
remodeling in various rodent models of PAH.37, 38 MIF, CCL5, and IL-18 also had central network roles in 
cluster 1. These mediators recruit mononuclear cells to the endothelium and perpetuate a proinflammatory 
milieu that appears to contribute to PAH vasculopathy.39-41 MIF antagonism partially reverses experimental 
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PAH and reduces inflammatory infiltrate.39 Intriguing paradoxes have been reported in PAH studies for 
TNF-, IL-1, and VEGF, which deserve mention given the low-risk clinical profile of cluster 3. TNF- 
appears to suppress endogenous prostacyclin, increase vascular reactivity, and promote SMC apoptosis 
resistance in PAH, however TNF- antagonism has not consistently ameliorated disease across preclinical 
studies.42-44 While IL-1  and  are highly expressed in PAH patients and IL-1 receptor blockade prevents 
development of disease in the monocrotaline rat model, antagonism has no effect in the chronic hypoxia 
model.45 IL-1 also interestingly enhances prostacyclin expression in SMCs, which may represent a 
compensatory response to inflammatory injury.44 Human and experimental data suggests that VEGF is 
upregulated and may be linked to EC growth in PAH. However, VEGF blockade in the Sugen-hypoxia 
model surprisingly triggers severe angio-obliterative PAH.46 Within the cluster 4 network, central proteins 
with established links to PAH pathogenesis are IL-6, PDGF-, and CCL2. Mice overexpressing IL-6 
spontaneously develop PAH with obliterative arteriolar remodeling.8 IL-6 perpetuates inflammation, 
induces EC apoptosis resistance, promotes SMC proliferation via FGF- (also central in cluster 4 network), 
and contributes to the BMPR2 pathway dysregulation that underlies PAH.10 PDGF- and CCL2 are also 
overproduced and exert mitogenic effects that propagate the proliferative vascular phenotype of PAH, and 
PDGF receptor antagonism reverses disease in animal models.47, 48  
 

On a more general level, immune clusters also appeared to have differential network signal for 
various molecular functions and pathways (see Figure 6). TH1 pathway mediators were upregulated and 
had high network centrality measures in cluster 1. TH1 skew likewise existed in cluster 3, though there was 
also network signal for the TH17 pathway, mediators of adaptive immunity, and anti-
inflammatory/regulatory proteins (including IL-10). This latter finding is interesting given the favorable 
cluster 3 outcomes and prior report that IL-10 injection inhibits experimental pulmonary hypertension.49 In 
the cluster 4 network, proteins that propagate the Th2 pathway, angiogenesis, and cellular proliferation 
were central and upregulated.   
 

If further validated beyond a single time point during disease progression, our findings could have 
implications for clinical trial design as therapies that target inflammation are under development. Various 
cytokine and growth factor antagonists have successfully reversed experimental pulmonary hypertension 
and are under active clinical investigation.10 Immune phenotyping may provide the crucial first step toward 
identifying specific patients who are more likely to respond to these emerging agents. Given that different 
degrees and forms of inflammation occur across patients, immune phenotyping could offer a guiding 
framework as therapies are translated to the clinical setting. It is possible that therapeutically targeting 
immunity might be futile when patients lack inflammation (cluster 2) or have endogenous anti-
inflammatory signaling and a favorable clinical risk profile (cluster 3). Clinical trials may ultimately benefit 
from cohort enrichment or stratification with therapeutically-relevant immune phenotypes. To achieve such 
clinical application, further research is needed to evaluate whether certain therapies alter proteomic profiles 
and determine if immune phenotypes have differential clinical responses. In the short-term, post-hoc 
analysis of existing clinical trials could offer insights. 
 

There are several limitations to our study. Non-biological variation can be an issue for multiplex 
cytokine measurements. Several measures were taken to minimize technical bias, as described in the 
methods section. We encountered batch effects nonetheless that required adjustment, but biological 
variation was retained post-adjustment and batches were evenly distributed across clusters (Online Table 
IX). Our proteomic panel did not include all known cytokines and chemokines, though was more complete 
than sets measured in prior studies of PAH inflammation.11, 12 We recognize blood profiling may not reflect 
the immune milieu in lung vasculature or right ventricle, but target organ sampling lacks feasibility. 
Substudies from the PVDOMICS initiative may be able to clarify whether gradients of metabolites and 
cytokines exist across the pulmonary and systemic vasculature.50 Another study limitation was the lack of 
proteomic comparison between clusters and non-PAH cardiopulmonary diseases that display inflammatory 
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signal. Most importantly, our analysis was limited to blood sampling at one time point, thus it is unknown 
whether immune phenotypes have temporal stability or can change dynamically with therapeutic 
interventions. Cluster proteomic profiles do not provide specific information about causal signaling 
pathways or immune cell biology, as cytokines are inherently pleotropic and could have multiple 
simultaneous source and effector cells. 
 

Our findings provide proof-of-concept for the application of unsupervised molecular phenotyping 
in PAH.  As high-throughput technologies advance and collaborations focused on deep PAH phenotyping 
emerge,5, 50 opportunities to leverage ‘omics’ data are ever-increasing. The capacity to exploit this data and 
deconstruct PAH heterogeneity will depend on unbiased study design and innovative implementation of 
informatics tools. Our general study approach is congruent with emerging precision phenotyping methods 
described for other cardiovascular diseases,32 as we avoided reductionist research strategies that assume a 
common pathophenotype across patients, focus on a specific molecular pathway/interaction, or anchor 
molecular analysis to certain clinical subgroups. We also implemented informatics methods with intent to 
sidestep bias. We rigorously applied a resampling-based machine learning approach for clustering, where 
objective criteria alone determined algorithm input parameters and the number of discovered clusters. 
Rather than merely find differentially expressed cytokines across phenotypes, we used partial correlation 
networks to analyze and identify central cytokines within the context of an interrelated system. 
 

Additional research is warranted to elucidate if discovered immune clusters represent endotypes 
with mechanistically-distinct and therapeutically-targetable forms of inflammation. In future study, we will 
reassess immune profiles longitudinally to evaluate if there is temporal stability or evolution with 
interventions and clinical disease progression. Forthcoming analyses should incorporate diseased controls 
without PAH, and capture the relationship between immune clusters and heart failure-related 
hospitalizations. To deepen our molecular phenotyping approach we intend to: expand the cytokine and 
chemokine panel, broadly assess the circulating immune cell landscape to identify activated subsets that 
characterize clusters and warrant in vitro study, examine transcriptomic profiles (of peripheral blood 
monocytes and pulmonary artery ECs sampled during catheterization) to ascertain differentially expressed 
transcripts and enriched biological pathways, and analyze histopathology in explanted lungs from transplant 
recipients across clusters. This multimodal phenotyping strategy could elucidate cluster-specific 
pathobiology and comprehensively establish PAH immune endotypes. We ultimately envision the 
development a of point-of-care test that feasibly stratifies immune endotypes and guides the selection of 
precision immune-targeting therapies. 
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FIGURE LEGENDS 
 
Figure 1. Immune phenotyping overview. [A] Discovery cohort. A plasma panel of immune-relevant 
proteins was measured using multiplex immunoassay in a Stanford University cohort of PAH patients 
(n=281) and healthy controls (n=88). Unsupervised machine learning (consensus clustering) was applied 
to classify PAH clusters with distinct proteomic immune profiles. For each PAH cluster, a partial correlation 
network was then constructed and analyzed (Gaussian graphical modeling) to examine proteomic 
relationships and identify central proteins. Clinical features and outcomes were thereafter compared across 
clusters. [B] Validation cohort.  The proteomic panel was also measured in a University of Sheffield PAH 
cohort (n=104). The same unsupervised consensus clustering method was reapplied, to determine if the 
approach identified immune clusters with proteomic and clinical features similar to those revealed during 
the discovery stage. 
 
Figure 2. Discovery cohort:  [A] Heatmap of standardized patient-level proteomic measurements by 
PAH cluster. Heatmap columns represent individual patients (grouped according to the clusters discovered 
by unsupervised consensus clustering), and each row is an assayed protein. Measured protein median 
fluorescence intensity (MFI) is displayed as a color-coded z-score (standard deviations above or below 
cohort mean). Healthy control proteomic measurements are shown in the far-right panel. Heatmap rows are 
ordered based on hierarchal clustering of proteins (dendogram not shown), solely for the purpose of 
visualization. [B] Principal component analysis of cluster proteomic profiles relative to controls. In a 
scatter plot of the first two principal components (PC1 vs PC2), the multivariable proteomic profile of each 
PAH patient is reduced to a single dot and colored according to consensus cluster assignment. Healthy 
controls are also shown as a reference. 
 
Figure 3. Discovery cohort: protein-protein network analysis by cluster. [A] Sparse core networks.  
For each cluster, an undirected weighted partial correlation network is constructed as a force-directed graph. 
Network nodes represent individual proteins, and node size reflects the detected plasma level in respective 
clusters. Edges connect node pairs, and edge weights are proportional to protein-protein partial correlations 
(red=positive, blue=negative). These sparse core networks reflect graphical LASSO regularization (less 
significant edges removed from saturated networks displayed in Online Figure III). [B] Central proteins 
in cluster networks. A Venn diagram highlights proteins with centrality in each cluster network. In 
quantitative network analysis, these proteins were upregulated (mean cluster plasma level greater than 
overall PAH cohort) and had network centrality (at least two of three centrality indices [strength, closeness, 
and betweenness] exceeded mean of all network nodes) (data shown in Online Figure IV). 
 
Figure 4. Discovery cohort: clinical comparison of clusters. [A] PAH etiology. Stacked bars display the 
distribution of underlying PAH etiologies within each machine learned proteomic patient cluster. [B] Non-
invasive clinical risk surrogates. For multiple well-established risk markers, bar plots indicate the 
percentage of patients in each cluster with high-risk status (top panel) and low-risk status (bottom panel) at 
the time of proteomic sampling. [C] Transplant-free survival analysis. Kaplan-Meier estimates of 
transplant-free survival from the time of plasma sampling are displayed for each cluster and compared by 
log-rank test. Survival curve cross-tags indicate censoring, and the number of patients remaining at risk 
over time is shown. 
 
Figure 5. Validation cohort: [A]. Heatmap of patient-level proteomic measurements by cluster.  
Individual patients (columns) are grouped by immune cluster, and measured proteins (rows) are in the same 
order as that displayed for the discovery cohort (see Figure 2A). The heatmap shows standardized protein 
MFI measurements as color-coded z-scores. [B]. Principal component analysis of proteomic profiles by 
cluster. In a scatter plot of the first two principal components (PC1 vs PC2), the multivariable proteomic 
data for each patient is represented by a single point and colored by immune cluster assignment. [C]. 
Survival analysis. Kaplan-Meier estimates of cluster survival are shown from the time of proteomic 
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sampling and compared by log-rank test. No censoring occurred, as five-year survival data was available 
for all patients.   
 
Figure 6. Proteomic network signal for molecular functions and pathways by PAH cluster.  For protein 
sets that relate to certain biological functions and pathways, plasma expression levels and network centrality 
measures are compared graphically across PAH clusters (centrality measures derive from the network 
analysis executed in Online Figures III-IV). Each figure panel denotes a set of functionally-related proteins, 
where rows correspond to the PAH clusters. For each protein, displayed circle size is proportional to the 
mean plasma expression level in a given cluster (z-score relative to overall cohort mean). Circle color 
represents quantified network centrality for the protein node (mean z-score of strength, closeness, and 
betweenness relative to other network nodes in the cluster). 
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NOVELTY AND SIGNIFICANCE 
 
What Is Known? 
 
 Aberrant immunity is a recognized feature of PAH,  as it has been shown  that (a) elevated levels of 

circulating cytokines portend worse prognosis; and (b) the burden of immune cells around remodeled 
lung vasculature correlates with vessel thickness and hemodynamic disease severity in idiopathic PAH. 
 

 Therapies targeting immunity ameliorate experimental pulmonary hypertension and are the focus of 
clinical trials; however, it is not known whether subsets of PAH patients have differing degrees and 
forms of inflammation.  

 
 PAH consensus statements have called for informatics-based molecular phenotyping studies to identify 

endophenotypes that reveal sources of biological and clinical heterogeneity, yield classification 
schemes relevant to underlying pathobiology, and translate to precision medicine. 

 
 
What New Information Does This Article Contribute? 
 
 Unbiased machine learning approach to classify PAH patients solely on the basis of blood cytokine 

profiles, reveals  four immune phenotypes with distinct inflammatory signatures. 
 

 While these immune phenotypes do not associate with underlying PAH etiologies, demographics, 
comorbidities or background medications, their clinical disease severity and outcomes differ 
significantly. 
 

 Analysis of protein-protein interaction networks implicated in PAH identifies a unique set of central 
cytokines for each phenotype. 

 
 

In unsupervised molecular phenotyping study and systems-based analysis of the circulating immune milieu 
across all Group 1 PAH subtypes, we assessed inflammation as a mechanistically-relevant platform for 
patient classification. Applying an unbiased machine learning approach to deconstruct blood proteomic 
profiles without guidance from clinical features, we uncovered four immune phenotypes with distinct 
circulating inflammatory profiles that are independent from clinical subtypes. While this proteomic-based 
classification strategy was not specifically intended to prognosticate, it stratified subgroups with differing 
clinical risk metrics and long-term survival. To elucidate  phenotype-specific pathobiology and candidate 
drug targets, we analyzed the proteomic profiles as interrelated networks and identified a unique set of 
central cytokines for each phenotype. These findings provides evidence that inflammation is a viable 
platform for PAH precision endotyping. Further research is warranted to examine the temporal evolution 
of proteomic profiles during disease progression. Ultimately, these phenotypes might inform mechanistic 
studies of disease pathogenesis, identify patients more likely to respond to certain therapies, and guide the 
selection of enriched clinical trial cohorts.  
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